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Temporal Codes and Computations for Sensory
Representation and Scene Analysis

Peter A. Cariani

Abstract—This paper considers a space of possible temporal
codes, surveys neurophysiological and psychological evidence
for their use in nervous systems, and presents examples of
neural timing networks that operate in the time-domain. Sensory
qualities can be encoded temporally by means of two broad strate-
gies: stimulus-driven temporal correlations (phase-locking) and
stimulus-triggering of endogenous temporal response patterns.
Evidence for stimulus-related spike timing patterns exists in nearly
every sensory modality, and such information can be potentially
utilized for representation of stimulus qualities, localization of
sources, and perceptual grouping. Multiple strategies for temporal
(time, frequency, and code-division) multiplexing of information
for transmission and grouping are outlined. Using delays and
multiplications (coincidences), neural timing networks perform
time-domain signal processing operations to compare, extract and
separate temporal patterns. Separation of synthetic double vowels
by a recurrent neural timing network is used to illustrate how
coherences in temporal fine structure can be exploited to build
up and separate periodic signals with different fundamentals.
Timing nets constitute a time-domain scene analysis strategy
based on temporal pattern invariance rather than feature-based
labeling, segregation and binding of channels. Further potential
implications of temporal codes and computations for new kinds of
neural networks are explored.

Index Terms—Autocorrelation, multiplexing, neural networks,
neural timing nets, temporal coding.

1. INTRODUCTION

HE project of understanding how the brain works as an in-

formation processing device is a exercise in reverse-engi-
neering: we seek to understand the functional principles by which
an highly effective system of unknown design achieves its goals.
Inorderto proceed, we need some grasp of its functional capabili-
ties, itsinternal structural organization, the input—output behavior
of its processing elements, the means by which internal signals
represent information, and the nature of information-processing
operations that are carried out on those signals [1]. Once func-
tional principles are understood, artificial devices can be designed
that rival and exceed their biological counterparts.

The neural coding problem involves identification of dimen-
sions of neuronal activity that play particular functional roles:
which aspects subserve which informational functions. We will
consider basic types of temporal pulse codes and how they
convey information. We define a neural code by its functional
role in the system: which changes in neural activity constitute
differences in information content that are used by the rest of
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the system to guide behavior [2], [3]. Our aim is to consider
representations and computations that different temporal codes
afford, rather than respective information transmission capac-
ities [4] or underlying biophysical mechanisms [5]. Temporal
codes can be used for representation of stimulus properties,
localization of sources, and perceptual grouping.

In Sections II-V, various types of temporal codes are out-
lined, followed by examples from sensory neurophysiology.
Section VI discusses temporal codes for signal multiplexing
and perceptual grouping. Latter sections present examples of
neural timing nets for temporal processing, and contemplate
future possibilities.

II. TYPES OF TEMPORAL CODES

Pulse codes afford many different means of encoding infor-
mation. Many catalogues and taxonomies of possible neural
pulse codes have been proposed [2], [3], [6]-[13]. Although
many are extensive, none covers all possible codes. Some exam-
ples are depicted in Fig. 1(A)—(K). The most basic distinction to
be made is between channel-based codes and temporal codes.

Channel-based codes convey sensory distinctions through
patterns of neural channel activations. The neural “labeled
line” channel determines the nature of the information con-
veyed. In rate-based codes [Fig. 1(A)], stimulus properties are
encoded via differences in neural discharge rates. “Rate-place”
schemes encode patterns and property-combinations through
across-neuron profiles of average discharge rates (which neu-
rons fire how frequently). Rate-place representations constitute
the neural coding assumption that has historically predominated
in the neurosciences and in neural networks.

In contrast to channel-codes, temporal codes [Fig. 1(B)—(G),
(D] convey distinctions through relative timings of spikes such
that alterations of spike timings change functional meanings of
messages conveyed. Temporal codes range from coarse tem-
poral modulations of discharge rate [14]-[16] to temporal cor-
relations between individual spikes. Time codes can serve as
vehicles for representation of stimulus attributes [2], [17], [18]
or for their grouping into perceptual objects [19]-[24].

Temporal codes can be divided by whether they rely on re-
curring temporal patterns of spikes in the same channel(s) or
on relative timings spikes arriving through different channels.
The simplest temporal pattern code is an interspike interval code
[Fig. 1(C)] in which time durations between spikes, produced by
the same neuron(s), convey information about stimulus proper-
ties [17]. More complex temporal patterns can represent mul-
tiple properties via multiple interspersed intervals [Fig. 1(D)],
[25], [26] and interval sequences [Fig. 1(E)], [18], [27], [28].
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Examples of neural pulse code schemes. (A) Rate-based channel code (# spikes in a given duration). (B) Rate modulation code (coarse temporal

modulations of firing rate). (C) Simple interspike interval (ISI) code. (D) Multiplexing of two independent sets of intervals. (E) Complex temporal pattern code.
(F) Simple time-of-arrival code (spike latency re: some reference event). (G) Interneural synchrony code (simultaneity). (H) Interneural synchrony (constant
temporal offset). (I) Burst length code (nontemporal spike count code). (J) Interburst interval code (temporal pattern of burst events). (K) Combinations of neural
ensemble-based channel, temporal pattern, and latency codes. Clockwise. Rate-channel scheme: rate profiles. Synchrony-place scheme: grouping of channels via
common arrival time (spike synchrony). Time-of-arrival: two different latency-place patterns. Temporal pattern: two different ensemble-wide interval patterns.
Spatiotemporal volley pattern (combination of all three code types): the same volley pattern shown twice.

Time-of-arrival or relative latency codes [Fig. 1(F)—(H)] use
timing relations between spikes produced by different neurons.
A well-known example [Fig. 1(H)] is found in binaural hearing,
where time differences of sonic wavefronts reaching the two
ears create different relative spike latencies in the two monaural
auditory pathways. Here relative timing of spikes across chan-
nels rather than temporal structure within channels coveys in-
formation about source location. Since first spike latencies typ-
ically shorten with stimulus intensity [2], [29], [30], latency
profiles (Fig. 1(K) lower right) can provide neuronal intensity
cues. Time-of-arrival codes encompass interneural synchronies,

be they simultaneous [Fig. 1(G)] or delayed (Fig. 1(H), constant
temporal offset).

While the taxonomy presented here is quite comprehensive
in that it covers codes based on both spatial and temporal spike
patterns, others stand outside its framework. For example, a
burst length code [Fig. 1(I)] that counts spikes within a burst
is neither a channel-code nor a temporal code. Similarly, an
interburst interval code [Fig. 1(J)] relies on intervals between
burst-events rather than between individual spikes. Still other
schemes could rely on sequences of channel activations, spike
times, and temporal patterns, i.e., ordinal rather than metrical
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relations [31] Coarse temporal coding schemes intermediate be-
tween rate and spike correlation codes have also been proposed
[10], [11]. Joint, statistical properties of neural ensembles, such
as fractions of channels activated [32] or synchronized, vari-
ability of responses [2], [33], lie together with many other pos-
sible population-based codes [34], [35].

III. EXTRINSIC AND INTRINSIC TEMPORAL
CODING MECHANISMS

Temporal codes are more common than is usually thought.
Examination of the neurophysiology literature reveals stim-
ulus-dependent temporal response patterns in early processing
stages of virtually every sensory modality. Information-bearing
temporal response patterns can be produced in two ways: ex-
trinsically, through the temporal locking of neuronal discharges
to stimulus waveforms (“phase-locking”), and intrinsically,
through stimulus-specific triggering of endogenously generated
time courses of response.

In many sensory systems, spike timings follow stimulus
waveforms. Examples from auditory nerve fibers in the cat
[36] and visual units in the monkey lateral geniculate nucleus
[37] are shown in Fig. 2(A) and (B). Phase-locked responses
also exist to mechanical vibrations of the skin [38], [39], to
accelerations in the vestibular system, to inhalation cycles and
odor pulses in olfaction [40], to self-produced electrical field
oscillations and their external distortions in electroception [41],
and to the movements of muscles via stretch receptors [42].

In the absence of stimulus locked responses, intrinsic tem-
poral response patterns characteristic of particular stimuli,
receptors, individual neurons, local neural circuits, and/or
whole neural populations can bear information about the
stimulus. Complex temporal response patterns are seen in the
chemical senses. In early olfactory coding, many characteristic
time courses of response depend upon both odorant and receptor
[40], [43]-[45]. Time-delay neural nets for artificial noses [46]
have been developed to effectively exploit relative latency
patterns to discriminate odors. In later processing timings of
discharge relative to oscillating field potentials are thought to
play a role in organizing odor percepts [43]. In the rat gusta-
tory system, different classes of tastants elicit characteristic
temporal response patterns [Fig. 2(C)] that are associated with
specific behavioral responses [47], [48]. Strikingly, playback
of respective temporal patterns via electrical stimulation elicits
appropriate behavioral responses in other rats, while scrambling
of the patterns does not. In visual systems, intrinsic interspike
interval patterns and coarse temporal modulations of firing rate
result from differences in form, texture, and wavelength [14],
[25], [49], [50]. The existence of subjective colors elicited by
flicker-stimuli [51], [52] and temporally structured electrical
stimulation [53] suggest the possibility of an intrinsic temporal
code for color [12], [13].

IV. TIME-OF-ARRIVAL CODING OF STIMULUS
LOCATIONAND MOTION

Temporal patterns of activation across different sensory sur-
faces provide highly robust cues for stimulus direction. In audi-
tion, mechanoception, and electroception, there may exist anal-
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ogous mechanisms that make use of this cue to translate tem-
poral differences into apparent location [2], [3], [41], [54], [55].
In all of these systems, receptors phase-lock to their respective
adequate stimuli, such that the temporal structure of the stim-
ulus is faithfully impressed on the timings of spikes produced
by primary sensory neurons. By virtue of phase-locking, rela-
tive stimulus arrival times at different receptor sites are trans-
lated into relative spike latencies across sensory pathways. Rel-
ative spike timings can then in turn analyzed via neural delays
and temporal coincidence detectors.

A well-known example is the localization of sounds in the
azimuthal plane by means of interaural time differences (ITD)
[56], [57]. Humans are able to distinguish differences of ITD as
small as ~20 ps. Wavefronts from sound sources not directly
in front of an observer arrive at the two ears at different times.
These wavefronts produce phase-locked spikes in auditory
nerve fibers whose relative timings reflect the interaural time
differences. In the auditory brainstem, highly secure synapses,
tapped delay lines, well-timed inhibitory inputs [5], and neural
coincidence detectors in effect implement binaural crosscor-
relation operations that provide a readout of interaural time
delays, and consequently, of azimuth estimates [41], [S7], [58].

Analogous processing mechanisms may exist in
mechanoception, where relative delays of mechanical
stimulation at different skin locations of a ms or more
manifest themselves perceptually as changes in apparent
location of stimulation [54]. As in audition, the apparent
location moves toward the sensory surface that leads in time.
Mechanoceptive receptors phase-lock to skin deformations
and hair displacements [38], [39], such that relative timings
of neuronal discharges reflect relative timings of the stimulus
arrival at different surfaces.

Active sensing involves observation of effects of actions
on external environments. In bat and cetacean echolocation,
acoustic signals are emitted and compared with echo patterns
that contain time delays that provide information about dis-
tances and shapes of objects. In bat echolocation, time delays
on the microsecond scale are registered by the relative timings
between spikes produced by cries and their echoes [59], [60].
In some bat systems low-frequency modulations caused by
interactions between the emitted signal and its Doppler shifted
echo provide potential temporal cues for relative velocity (e.g.,
target flight speed and fluttering wingbeats) [59]. Another
time-based active sensing strategy is found in electroception
[41], [61]. Weakly electric fish produce sinusoidally-varying
electrical fields around their bodies that are deformed by the
presence of nearby external objects. These deformations alter
the relative phases of the electric field at different body loca-
tions, which alter the relative latencies of spikes produced in
afferent electroceptive pathways. As in the binaural example,
these pathways have highly secure, low jitter connections,
neural delays, and central coincidence detectors that permit use
of sub-microsecond time-of-arrival differences.

Visual receptor arrays can be considered as collections of re-
ceptor surfaces. Phase-locking to temporal modulations of lu-
minance produced by moving spatial patterns is ubiquitous in
the visual systems of animals. As a consequence, temporal cor-
relations between spikes produced in different visual channels
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Fig. 2. Extrinsic and intrinsic temporal codes in early sensory processing. (A) Phase-locking of six cat auditory nerve fibers to a low-frequency harmonic
complex tone. Rate-threshold tuning curves and poststimulus time histograms reflect effects of both cochlear filtering and the fine time structure of the stimulus.
(B) Phase-locking of a visual neuron in the lateral geniculate nucleus of an anesthetized monkey in response to drifting gratings corresponding to sinusoidal
temporal luminance modulations of 16 and 32 Hz. Period histograms and all-order interspike interval distributions are shown (16 Hz: 1233 spikes, 5897 intervals;
32 Hz: 495 spikes, 1102 intervals). Rate-based spatial tuning curve for the unit (mean +sd). Data courtesy of Przybyszewski & Pollen. (C) Intrinsic time courses of
response in the gustatory system to four tastants of different classes: 0.1M NaCl (salty), 0.1M quinine (bitter), 0.1M HCI (sour), 0.5M sucrose (sweet). Waveforms
are typical whole-nerve responses recorded from the chorda tympani of decerebrate rats. From Covey (1980).

potentially provide a general neurocomputational basis for the
representation of visual motion. In the fly visual system, dif-
ferent spike timings in neighboring ommatidia are used for de-
tection of motion [62]-[64]. Temporal crosscorrelation of small
numbers of spikes permits rapid and precise motion estimations
that inform flight course corrections in as little as 30 ms [63],
[64].

Visual forms might also be encoded through temporal
correlations between spikes produced across different retinal
locations. Most vertebrate eyes are in constant drift even during
fixation, and, many central visual neurons are known to dis-
charge with relatively precise latency when contrast gradients
(edges) cross their receptive fields. Moving images create

temporal modulations of luminance to which visual neurons
phase-lock [Fig. 2(B)]. As in the auditory nerve, application
of a temporally modulated stimulus converts a spike arrivals
from a Poisson-like process to one dominated by the stimulus
time structure. When sinusoidally-varying spatial gratings are
drifted across receptive fields at constant velocities, at each
retinal location spatial frequencies are converted to temporal
frequencies of luminance modulation. Spike timings, as ana-
lyzed through peri-stimulus time (PST), period, and all-order
interval histograms [Fig. 2(B)], faithfully replicate the temporal
structure of the drifting image [65]. Temporal frequency can,
thus, be accurately estimated from interspike interval statistics.
For the lateral geniculate unit shown, temporal modulation
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frequencies of 16 and 32 Hz were estimated to within 0.5%
and 2%, repectively, of their true values on the basis of 5897
and 1102 all-order intervals. Given the coarseness of rate-based
modulation tuning (rightmost plot), it is obvious that the spike
timing information provides much finer precisions.

Similar stimulus-locking is seen for other visual stimuli.
Many neurons in early stages of visual processing phase-lock
to visual flickers of 50-100 Hz, but the relationship between
perceptual flicker fusion limits and phase-locking is not simple
[66]. Highest observed precisions of stimulus-driven spike
timings in visual systems range from hundreds of microseconds
to a few ms [63], [64], [67]-[69]. Stimulus-dependent syn-
chronizations of spikes produced by different spatially remote
neurons on the order of a few ms are also seen [70].

If the visual system used stimulus-driven spatial patterns of
temporal correlations to register edges, then the disappearance
of visual forms when an image is stabilized on the retina [71]
could be readily explained. When images are stabilized, lumi-
nances are temporally unmodulated such that spike generation
at each retinal position reverts to a Poisson-like process [72].
Temporal correlations of spikes across retinal positions disap-
pear, as would spatial form information. The hypothesis is also
consistent with recent psychophysical demonstrations that vi-
sual forms can be created through short-term spatiotemporal
correlations that have no long-term spatial structure [73]. Such
a hypothesis also potentially explains the hyperacuity problem
in vision [64]—why visual acuity far exceeds the coarse spa-
tial resolutions of individual receptive fields. It has been esti-
mated from vernier acuity experiments with moving bars [74]
that stimulus-driven spike timing with 1 ms jitter would be suf-
ficient to account for observed performances, which lies within
the realm of observed spike timings of visual units [75]. It also
raises the possibility of spike-based spatiotemporal representa-
tions that couple to theories of visual form based on spatial auto
and crosscorrelations [32], [76]-[78].

V. PHASE-LOCKED CODING OF STIMULUS WAVEFORMS

To the extent that sensory receptors follow the time struc-
ture of their adequate stimuli, that time structure is impressed
on the timings of discharges of sensory neurons. As we have
seen above, comparisons of the relative timings across receptors
yields information about stimulus direction, movement, and per-
haps, spatial form. For many kinds of stimuli, sensory qualities
are related to the internal time structure of the stimulus wave-
form. Stimulus-locked temporal patterns of spikes in sensory
neurons reflect this internal structure and, thus, provide infor-
mation about the temporal form of the stimulus.

In the auditory system, phase-locked neural timing informa-
tion is thought to be critical for most frequency discrimination
[79]-[81]. Phase-locking of auditory nerve fibers to acoustic
stimuli creates time intervals between spikes (interspike
intervals) that are directly related to stimulus periodicities
[Figs. 2(A) and 3(B)]. Distributions of interspike intervals from
auditory neurons consequently contain information about the
stimulus waveform and power spectrum for frequencies up
to the limits of phase-locking. Phase-locking is maintained at
virtually all sound pressure levels above response thresholds
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such that interspike interval representations easily account for
high precisions of auditory frequency discriminations over wide
ranges of frequencies and sound pressure levels. As in binaural
hearing, the time differences corresponding to the finest fre-
quency discriminations (0.2% for pure tones near 1 kHz) are
in the vicinity of 20 us. The progressively poorer ability of
human listeners to distinguish higher frequencies from 2-10
kHz covaries with the progressive decline in phase-locking (and
the quality of interval-based information) at those frequencies
[79], [81]-[83]. Likewise, the frequency region for which there
is good phase-locking, roughly up to 4 kHz, is coextensive
with the existence region of musical tonality (octave matching,
musical interval and melodic recognition).

Pitches of complex tones are explicable in similar terms.
Harmonic complex tones produce pitches at their fundamen-
tals (FOs), even in the absence of any spectral energy at that
frequency (“pitch of the missing fundamental”). These low
pitches of complex tones predominate in speech and music
(they are the voice pitches we hear over telephones and cheap
radios). In 1951, Licklider proposed a duplex time-delay
neural network that operated on phase-locked auditory nerve
responses to compute both rate-place and temporal autocor-
relation representations of stimulus power spectra [81], [84],
[85]. Decades later, the global interspike interval distribution
of the auditory nerve was proposed as a candidate temporal
representation for the pitch of complex tones. The general
hypothesis has been confirmed in computer simulations [86]
and in neurophysiological studies (Fig. 3) [36], [87]. With
very few exceptions, the most common interval in the auditory
nerve at any given time [Fig. 3(F)] corresponds to the pitch
that is heard. On the basis of several thousand intervals, the
fundamental pitch can be reliably estimated (within 1%). The
fraction of pitch-related intervals qualitatively corresponds to
the strength of the pitch that is heard. Such purely temporal,
population-interval representations also account for many
complex and subtle pitch phenomena: pitches of “missing
fundamentals,” pitch equivalence classes, relative invariance
of pitch and pitch salience with sound pressure level, pitches
of stimuli having psychophysically-unresolved harmonics, the
“nonspectral” pitches of amplitude modulated noise, as well as
complex patterns of pitch shift that are heard for inharmonic
stimuli. In effect, population-wide distributions of all-order
interspike intervals form autocorrelation-like representations
of the stimulus that in many (though not all) respects mirror
stimulus autocorrelation functions. [87]; see [81] for recent
developments and controversies. The close correspondences
between the behavior of population-interval representations
and psychophysically-observed patterns of pitch judgments
provide very strong evidence that the interval information is
utilized by the auditory system for pitch perception.

Purely temporal representations of vowel quality are also
possible [80], [87]. Auditory nerve fibers phase-lock to
frequency components in formant regions, consequently pro-
ducing related intervals whose respective numbers depend on
component intensities. Population-wide interval distributions
consequently represent spectral energy distributions (formant
patterns) through patterns of short intervals (0—4 ms) [85],
[87]-[89] These purely temporal representations of dominant
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Fig. 3. Temporal coding of pitch in the auditory nerve. (A) Single-formant
vowel waveform that produces a low pitch at its fundamental frequency
(FO = 80 Hz). (B) Poststimulus time histograms of 52 cat auditory nerve
fibers in response to 100 stimulus presentations at 60 dB SPL, arranged by
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Stimulus autocorrelation function. (E) Population driven-rate profile (discharge
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periodicity (pitch) and spectral energy distribution (timbre)
have the high precision and robustness over large dynamic
ranges that are characteristic of most auditory percepts. Their
resilience to background noise [90] and sound separation capa-
bilities [80] make them useful front-ends for artificial speech
recognition systems.

The somatosensory analogue of auditory pitch is the sense of
flutter-vibration [3], [38], [54]. Discrimination of frequencies up
to 1 kHz appears to be based on interspike interval patterns pro-
duced through phase-locking of cutaneous afferents [39]. Com-
plex tactile patterns produce corresponding temporal spike pat-
terns [91] making an interval-based representations of tactile
texture possible that parallel those for auditory pitch and timbre.

VI. TEMPORAL CODES IN SIGNAL MULTIPLEXING
AND SCENE ANALYSIS

In addition to encoding sensory qualities themselves, tem-
poral codes may be involved in perceptual grouping mecha-
nisms. If object-properties are encoded via patterns of channel-
activations, then the timing of those activations can be used to
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sort them out. If object-properties themselves are encoded tem-
porally, then commonalities of temporal pattern can be used as
a basis for grouping.

Multiplexing involves the use of the same neural elements for
concurrent representation and transmission of multiple signals.
Multiplexing of information permits a given neuronal element to
contribute to the representation of multiple perceptual objects,
provided that there is a means of associating signals with par-
ticular objects. Three temporal strategies for binding ensembles
of channels are time-division, frequency-division, and code-di-
vision multiplexing [Fig. 4(A)-(C)].

In time division multiplexing [Fig. 4(A)], the same channels
participate in the encoding of multiple objects albeit at different
times. If objects are represented by patterns of channels (e.g.,
feature detectors) then common spike timing in subsets of chan-
nels can be used as a principle for grouping [Fig. 4(B)]. The
lines remain labeled to signify the features they encode, while
the time domain is used to signify which channels are grouped
or separated [23], [24]. The temporal label can involve either
timing relative to a reference wave [92]-[94] or spike synchro-
nization between channels [19]-[22], [95].

In frequency-division multiplexing [Fig. 4(B)], different
signals utilize different frequency bands such that they can
be mixed together in transmission channels and separated by
receivers on the basis of their respective frequencies. In a pulse
code, interpulse intervals encode different frequencies. The
population-interval representation of low frequency sounds
discussed above is a frequency-multiplexed system in that in-
terspike intervals associated with different stimulus frequency
components are conveyed by the same overlapping sets of
auditory nerve fibers.

In code division multiplexing [Fig. 4(C)], patterns encoding
features are not limited to any one frequency band. In the
scheme shown in the figure, an initial header segment indicates
signal-identity while a second segment conveys signal value.
In a pulse code implementation, headers and value segments
can be signaled by characteristic bursts consisting of different
intra-burst intervals. The scheme here is similar to one proposed
for multimodal encoding of cutaneous qualities [18]. Receivers
selectively tuned to particular headers would process pulse
trains segments with appropriate burst structure and ignore
others. Multiple types of signals might then be asynchronously
sent over each transmission line and demultiplexed by appro-
priate receivers.

VII. NEURAL INFORMATION PROCESSING IN THE TIME DOMAIN

The near-ubiquity and robustness of spike timing informa-
tion in early sensory representations begs questions concerning
what neural temporal processing architectures are needed to
fully exploit this information. The basic division between
channel-based and temporal codes creates three broad classes
of processing networks: connectionist networks, time-delay
networks, and timing nets. Historically, time-delay networks
have been used to convert analog, temporally-coded inputs into
discrete patterns of channel-activations (e.g., [56], [84], [96]).
However, neural networks can also be envisioned that carry
out analog filtering and signal separation operations of sorts
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Fig. 4. Signal multiplexing: concurrent transmission of multiple signals over
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time-slots to each signal (A-E). Neural pulse-coded TDM could use successive
temporal windows or spike synchronies (B) Pulse-coded frequency-division
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Code-division multiplexing encodes signal-type in the form of the signal, using
header sequences that direct asynchronous and nonsequential transmission and
reconstruction of the signal by each receiver. Code-division multiplexing using
complex temporal pulse patterns as primitives. Initial burst encodes signal type,
while subsequent spikes encode signal content. Patterns can be interleaved and
transmitted asynchronously over the same channels.

familiar to signal processing engineers but relatively foreign
to neuroscientists and neural network theorists. Using delay,
multiplication (coincidence), and subtraction-cancellation [81]
(inhibition) operations, neural timing networks carry out signal
processing operations entirely in the time domain to compare,
extract, and separate temporal patterns.
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Feedforward timing nets (FFTNs) consist of arrays of ideal-
ized coincidence detectors that take inputs from multiple sets of
tapped delay lines Fig. 5, [97]. Timing nets exploit the ability
of axons to shift (delay) temporal patterns in time. Although
structurally reminiscent of Jeffress and [56] and Braitenberg ar-
chitectures [96], FFTNs have no subsequent “counting” or rate
integration stage; their outputs are time rather than channel pat-
terns. The computational properties of simple FFTNs with two
sets of tapped delay input lines are straightforward. Spikes are
fed in from either end of the array and propagate through their
respective delay lines, crossing at different positions to produce
output spikes. Each horizontal array position implements a par-
ticular relative delay between the input signals [Fig. 5(B)].

Several basic operations can be carried out [97]. First, the
crosscorrelation function of the two inputs can be computed by
counting the number of spikes in each output channel (vertical
bar) as a function of relative delay (i.e., the Jeffress model). Con-
volutions can be computed by summing across relative delay
channels for each time step [98], i.e., forming the collective peri-
stimulus time histogram (PSTH) of the detector ensemble. The
operation is similar to the common flip/shift/multiply method of
computing convolution.

The “summary autocorrelation” of the outputs is the sum of
the output channel autocorrelations (all-order interval distribu-
tions), analogous to the neural population-interval representa-
tions for pitch and timbre discussed above. Since the output
summary autocorrelation of the FFTN is the product of the input
autocorrelations, the coincidence array computes a cross spec-
tral product in the time domain, from interval (lag) statistics.
This multiplication of autocorrelations permits extraction of in-
tervals related to common fundamentals (pitch) irrespective of
the particular partials involved (timbre, vowel quality), and vice
versa. Intervals associated with a common F0 shared by two sig-
nals can be extracted even if the signals have no harmonics in
common.

A further consequence is that each interval or higher order
spike arrival pattern (e.g., triplets) must be present in each of
the inputs in order to appear in an output channel [Fig. 5(E)].
The array, thus, functions as a temporal sieve, passing those tem-
poral patterns that are common to both sets of inputs, even when
they are embedded in other spikes. These sifting operations are
useful for computing intersections of sets of patterns, detecting
embedded patterns, and for extracting patterns of interest from
signals. Feedforward nets also separate temporal patterns on the
basis of time-of-arrival disparities [Fig. S(F)].

VIII. RECURRENT NEURAL TIMING NETS (RTNS)

Recurrent timing nets (RTNs) were developed to handle the
detection and separation of periodic patterns. Periodic signals,
such as those that produce strong pitches and rhythms, create
strong temporal expectations. RTNs were inspired by time do-
main spike processing [98], stabilized auditory image architec-
tures [99], reverberating circuits [100], neural loops [101], adap-
tive timing nets [102], Grossberg’s adaptive resonance circuits,
and the psychology of temporal expectation. Concrete guidance
has also come from auditory scene analysis: how perceptual at-
tributes of sounds are organized into objects, voices, and streams
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Feedforward timing nets. (A) Basic structure. (B) Crosscorrelation by summing output pulses within channels at each relative delay. Convolution by

summing across channels at each time step. (C) Summary autocorrelation of the output computes products of input autocorrelations. (D) Extraction of higher order
temporal patterns containing interspersed spikes. (E) Separation of patterns (inset) with different relative delays or phases.

that can be separated from one another [103], [104]. Common
periodicity (harmonicity) is a very strong grouping cue in au-
dition. Although most low-frequency auditory perception is fa-
mously insensitive to the stationary phase-spectrum of the stim-
ulus, transient phase and amplitude shifts are known to cause
individual harmonics to separate from a complex. In the case
of mistuned harmonics, which also readily separate, the phase
of the mistuned component constantly precesses relative to that
of the rest of the complex. In echolocation the neuronal mech-
anisms likely involve fine time comparisons between a signal
(cry) and its repetition (echo) [60]. All of these examples sug-
gest a process by which a signal waveform is compared with
itself on a period-by-period basis.

In RTNs signals circulate in reverberating conduction loops,
as temporal memory traces that interact with incoming temporal
patterns. Neural representations then build up over time, with
previous patterns dynamically creating sets of perceptual ex-
pectations that can either be confirmed and built up or violated.
RTNs provide a basic mechanism for modeling echoic memory,
separation of periodic sounds, thythm induction, and creation of
temporal expectancies.

Recurrent timing nets are in formative stages of development.
The simplest recurrent timing networks consist of a 1-D array of
coincidence detectors having common direct inputs [Fig. 6(A)].

The output of each coincidence element is fed into a recurrent
delay line such that the output of the element at time ¢ circu-
lates through the line and arrives at the element at time ¢ + tau
[Fig. 6(B)]. In more recent implementations [105], a simple
error-adjustment processing rule (1,2) governs the interaction
of direct and circulating inputs

H(t) =H(t — tau) + Biau [X(t) — H(t — tau)] (1)
Btau - 3;0/0’ (2)
ms

Here X (¢) is the direct input signal, H (¢t — taw) is the incoming
circulating signal, and H (t) is the outgoing circulating signal.
Tau is the recurrence time of the loop. By, determines the rate
of adjustment and the length of the temporal processing window,
which corresponds to the lower limit of pitch [81], [106].

In signal processing terms, RTNs most resemble neural time-
domain implementations of comb filtering operations. Although
the computations bear many similarities to correlogram-based
segregation and oscillator-based channel allocations [95], by
keeping processing entirely in the time domain, the RTN pro-
duces separated waveforms rather than ensembles of grouped
frequency channels.

Some basic signal separation capabilities of RTNs have been
tested on concurrently-presented vowel pairs (‘“double vowels™).
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A considerable body of psychophysical, neurophysiological,
and neurocomputational work exists on their perception, [97].
When fundamentals are the same, the vowels are fused together,
making the constituents harder to identify. When fundamentals
are separated by a semitone (6%) or more, they are heard as two
separate auditory objects, and can be identified with somewhat
higher accuracy (15%—-20% improvement).

A typical case is illustrated here (Fig. 6). Synthetic, three-
formant double vowels (/ae/, /er/) with different fundamentals
(100, 112 Hz, Fig. 8AB) were summed [Fig. 6(E)] and pro-
cessed by a network with 150 delay loops that spanned 0-15
ms delays. Invariably, the two periodic patterns build up fastest
in the delay loop whose recurrence time best matches their rep-

etition time [Fig. 6(F)]. Here the loops with the highest average
signal strength correspond to the periods of the two vowels (8.9
and 10 ms). The signals circulating in these two delay channels
after 70 ms of processing [Fig. 6(G) and (H)] highly resemble
the two vowel constituents [Fig. 6(A) and (B)]. Correlations be-
tween the autocorrelations of separated signals and individual
vowels [Fig. 6(I)] show how these resemblances increase as the
signal separation unfolds over processing time. Multichannel
RTNs with auditory nerve front-ends have also been explored,
with similar results [97].

In effect, the loops dynamically create matched filters from
repeating temporal patterns in the stimulus. Temporal-pattern
invariances are then enhanced relative to uncorrelated patterns
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in each loop, such that each loop functions as a pattern-amplifier
for stimulus patterns whose period equals the loop’s recurrence
time. The network as a whole will amplify any periodic temporal
patterns in its input and sort them out according to their periods.
With longer sets of delays, such networks also separate multiple
rhythm subpatterns [106].

RTNs illustrate how phase-locked fine timing information
(and transient changes in phase) can be used to separate sounds.
Most existing strategies for separating sounds on the basis of
fundamental frequency attempt to group frequency channels to-
gether by finding FO-related features in each channel, e. g., [21],
[22], [95], [107]. The RTN model demonstrates an alternate,
time-domain strategy for auditory object separation that 1) ex-
ploits fine timing information and 2) uses no explicit feature
detection (i.e., FO-detectors). Rather than labeling frequency
channels for segregation, the delay loops amplify temporal pat-
tern-invariances in the waveform. Auditory objects are, thus,
separated on the basis of temporal pattern coherence [23]. Re-
current timing nets demonstrate how auditory images can be
built up by comparing a signal with its immediate past [99].
They show how purely temporal representations and compu-
tations can effect separation and identification of auditory ob-
jects even when the information that constitutes them is tempo-
rally multiplexed in many of the same frequency channels. The
nets provide a simple processing scheme in which object forma-
tion comes prior to analysis of auditory qualities (pitch, timbre)
rather than as its consequence. They illustrate how auditory sep-
aration mechanisms might use transient changes in phase to
form objects that are subsequently analyzed by phase-insensi-
tive mechanisms for periodicity (pitch) and spectrum (timbre).
In the context of speech separation and recognition, it may there-
fore make sense not to discard phase information in early stages
of signal processing that may provide a basis for speaker sepa-
ration.

Looking ahead, it is conceivable that judicious adjustment
of synaptic weights and delays could result in networks ca-
pable of regenerating distributed temporal patterns—reverber-
ating memories [100]. In randomly-connected nets, delay loops
could be formed on the fly by short-term facilitations created by
temporal correlations. The time structure of a incoming signal
would dynamically organize central neural circuits so as to prop-
agate and build up stable, reverberating patterns.

IX. POTENTIAL IMPLICATIONS FOR NEURAL NETWORKS

Temporal codes and computations may provide new avenues
for artificial neural network development. Some of the general
advantages of temporal codes stem from their ability to encode
sensory information in a manner largely independent of stim-
ulus intensity; this facilitates formation of intensity-invariant
perceptual equivalence classes, which drastically simplifies pat-
tern recognition. Signal multiplexing, mass statistical represen-
tations, and vectorial encodings may permit neural networks to
handle information in more flexible ways that liberate signals
from wires.

In a traditional connectionist network, all signals are scalars
that are weighted and combined with many other signals at each
node. The ability to temporally multiplex multiple independent

1109

signals lessens their competitive interference. Networks can be
envisioned in which neural assemblies tuned to respond to spe-
cific temporal patterns propagate both locally-relevant and irrel-
evant parts of neural signals. Inter-transparency of signals would
then allow broadcast strategies of neural integration and coordi-
nation that would begin to resemble asynchonrous, decentral-
ized communications systems.

Temporal codes permit neural representations based on mass
statistics of spike correlations. Population-interval representa-
tion of auditory qualities discussed above is a concrete example.
If information can be encoded in temporal patterns of spikes,
then processing can occur on population or ensemble-wide
scales that obviate the need for particular elements, intercon-
nections, synaptic efficacies, and transmission paths in order to
function, a longstanding problem in theoretical neuroscience.
Feedforward timing nets provide a simple processing strategy
that obviates the need for precise point-to-point connectivities;
although very primitive, they suggest strategies by which
information might be processed on a mass-statistical basis
without regard for which particular elements and connections
are involved.

Finally, temporal codes support multiple, independent signal
types. Independent signal types allow for vectorial, multidimen-
sional representations in which temporal patterns related to dif-
ferent aspects of a situation or object might be be flexibly super-
posed [20]. For example, characteristic temporal patterns might
distinguish information from different sense modalities [18].
Tag systems based on orthogonal sets of temporal patterns might
then permit representational compositionality and high-dimen-
sional computations on them. Over the course of processing in-
coming information, neural assemblies would add specific an-
notational tags to circulating signals, such that the circulating
temporal patterns could increase their effective dimensionality
over time to create new categories.
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